Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Chinese Journal of Biotechnology ; (12): 1202-1216, 2023.
Article in Chinese | WPRIM | ID: wpr-970433

ABSTRACT

Biodegradation of pyridine pollutant by microorganisms is one of the economical and effective methods to solve the environmental pollution of pyridine under high salinity conditions. To this end, screening of microorganisms with pyridine degradation capability and high salinity tolerance is an important prerequisite. In this paper, a salt-resistant pyridine degradation bacterium was isolated from the activated sludge of Shanxi coking wastewater treatment plant, and identified as a bacterium belonging to Rhodococcus on the basis of colony morphology and 16S rDNA gene phylogenetic analysis. Salt tolerance experiment showed that strain LV4 could grow and degrade pyridine with the initial concentration of 500 mg/L completely in 0%-6% saline environment. However, when the salinity was higher than 4%, strain LV4 grew slowly and the degradation time of pyridine by strain LV4 was significantly prolonged. Scanning electron microscopy showed that the cell division of strain LV4 became slower, and more granular extracellular polymeric substance (EPS) was induced to secrete in high salinity environment. When the salinity was not higher than 4%, strain LV4 responded to the high salinity environment mainly through increasing the protein content in EPS. The optimum conditions for pyridine degradation by strain LV4 at 4% salinity were 30 ℃, pH 7.0 and 120 r/min (DO 10.30 mg/L). Under these optimal conditions, strain LV4 could completely degrade pyridine with an initial concentration of 500 mg/L at a maximum rate of (29.10±0.18) mg/(L·h) after 12 h adaptation period, and the total organic carbon (TOC) removal efficiency reached 88.36%, indicating that stain LV4 has a good mineralization effect on pyridine. By analyzing the intermediate products in pyridine degradation process, it was speculated that strain LV4 achieved pyridine ring opening and degradation mainly through two metabolic pathways: pyridine-ring hydroxylation and pyridine-ring hydrogenation. The rapid degradation of pyridine by strain LV4 in high salinity environment indicates its application potential in the pollution control of high salinity pyridine environment.


Subject(s)
Rhodococcus/genetics , Phylogeny , Extracellular Polymeric Substance Matrix/metabolism , Sewage , Biodegradation, Environmental , Pyridines/metabolism
2.
Chinese Journal of Biotechnology ; (12): 3653-3662, 2021.
Article in Chinese | WPRIM | ID: wpr-921454

ABSTRACT

Microorganisms are the dominant players driving the degradation and transformation of chloramphenicol (CAP) in the environment. However, little bacterial strains are able to efficiently degrade and mineralize CAP, and the CAP degrading pathways mediated by oxidative reactions remain unclear. In this study, a highly efficient CAP-degrading microbial consortium, which mainly consists of Rhodococcus (relative abundance >70%), was obtained through an enrichment process using CAP-contaminated activated sludge as the inoculum. A bacterial strain CAP-2 capable of efficiently degrading CAP was isolated from the consortium and identified as Rhodococcus sp. by 16S rRNA gene analysis. Strain CAP-2 can efficiently degrade CAP under different nutrient conditions. Based on the biotransformation characteristics of the detected metabolite p-nitrobenzoic acid and the reported metabolites p-nitrobenzaldehyde and protocatechuate by strain CAP-2, a new oxidative pathway for the degradation of CAP was proposed. The side chain of CAP was oxidized and broken to generate p-nitrobenzaldehyde, which was further oxidized to p-nitrobenzoic acid. Strain CAP-2 can be used to further study the molecular mechanism of CAP catabolism, and has the potential to be used in in situ bioremediation of CAP-contaminated environment.


Subject(s)
Biodegradation, Environmental , Chloramphenicol , RNA, Ribosomal, 16S/genetics , Rhodococcus/genetics , Sewage
3.
Braz. j. microbiol ; 49(3): 481-488, July-Sept. 2018. graf
Article in English | LILACS | ID: biblio-951816

ABSTRACT

Abstract An increasing production of natural rubber (NR) products has led to major challenges in waste management. In this study, the degradation of rubber latex gloves in a mineral salt medium (MSM) using a bacterial consortium, a mixed culture of the selected bacteria and a pure culture were studied. The highest 18% weight loss of the rubber gloves were detected after incubated with the mixed culture. The increased viable cell counts over incubation time indicated that cells used rubber gloves as sole carbon source leading to the degradation of the polymer. The growth behavior of NR-degrading bacteria on the latex gloves surface was investigated using the scanning electron microscope (SEM). The occurrence of the aldehyde groups in the degradation products was observed by Fourier Transform Infrared Spectroscopy analysis. Rhodococcus pyridinivorans strain F5 gave the highest weight loss of rubber gloves among the isolated strain and posses latex clearing protein encoded by lcp gene. The mixed culture of the selected strains showed the potential in degrading rubber within 30 days and is considered to be used efficiently for rubber product degradation. This is the first report to demonstrate a strong ability to degrade rubber by Rhodococcus pyridinivorans.


Subject(s)
Rubber/metabolism , Soil Microbiology , Rhodococcus/isolation & purification , Rhodococcus/metabolism , Latex/metabolism , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Biodegradation, Environmental , Rhodococcus/classification , Rhodococcus/genetics , Gloves, Protective/microbiology
4.
Braz. j. microbiol ; 46(4): 1009-1018, Oct.-Dec. 2015. tab, graf
Article in English | LILACS | ID: lil-769674

ABSTRACT

Abstract Recently, there has been a lot of interest in the utilization of rhodococci in the bioremediation of petroleum contaminated environments. This study investigates the response of Rhodococcus erythropolis IBBPo1 cells to 1% organic solvents (alkanes, aromatics). A combination of microbiology, biochemical, and molecular approaches were used to examine cell adaptation mechanisms likely to be pursued by this strain after 1% organic solvent exposure. R. erythropolis IBBPo1 was found to utilize 1% alkanes (cyclohexane, n-hexane, n-decane) and aromatics (toluene, styrene, ethylbenzene) as the sole carbon source. Modifications in cell viability, cell morphology, membrane permeability, lipid profile, carotenoid pigments profile and 16S rRNA gene were revealed in R. erythropolis IBBPo1 cells grown 1 and 24 h on minimal medium in the presence of 1% alkanes (cyclohexane, n-hexane, n-decane) and aromatics (toluene, styrene, ethylbenzene). Due to its environmental origin and its metabolic potential, R. erythropolis IBBPo1 is an excellent candidate for the bioremediation of soils contaminated with crude oils and other toxic compounds. Moreover, the carotenoid pigments produced by this nonpathogenic Gram-positive bacterium have a variety of other potential applications.


Subject(s)
Adaptation, Biological/drug effects , Adaptation, Biological/genetics , Adaptation, Biological/physiology , Adaptation, Biological/toxicity , Organic Chemicals/drug effects , Organic Chemicals/genetics , Organic Chemicals/physiology , Organic Chemicals/toxicity , /drug effects , /genetics , /physiology , /toxicity , Rhodococcus/drug effects , Rhodococcus/genetics , Rhodococcus/physiology , Rhodococcus/toxicity , Solvents/drug effects , Solvents/genetics , Solvents/physiology , Solvents/toxicity
5.
Braz. j. microbiol ; 46(2): 425-432, Apr-Jun/2015. tab, graf
Article in English | LILACS | ID: lil-749712

ABSTRACT

The strain JPL-2, capable of degrading fenoxaprop-P-ethyl (FE), was isolated from the soil of a wheat field and identified as Rhodococcus ruber. This strain could utilize FE as its sole carbon source and degrade 94.6% of 100 mg L−1 FE in 54 h. Strain JPL-2 could also degrade other aryloxyphenoxy propanoate (AOPP) herbicides. The initial step of the degradation pathway is to hydrolyze the carboxylic acid ester bond. A novel esterase gene feh, encoding the FE-hydrolyzing carboxylesterase (FeH) responsible for this initial step, was cloned from strain JPL-2. Its molecular mass was approximately 39 kDa, and the catalytic efficiency of FeH followed the order of FE > quizalofop-P-ethyl > clodinafop-propargyl > cyhalofop-butyl > fluazifop-P-butyl > haloxyfop-P-methyl > diclofop-methy, which indicated that the chain length of the alcohol moiety strongly affected the hydrolysis activity of the FeH toward AOPP herbicides.


Subject(s)
Carboxylesterase/genetics , Carboxylesterase/metabolism , Herbicides/metabolism , Oxazoles/metabolism , Propionates/metabolism , Rhodococcus/isolation & purification , Rhodococcus/metabolism , Biotransformation , Cloning, Molecular , Cluster Analysis , Carboxylesterase/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Molecular Weight , Phylogeny , /genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhodococcus/enzymology , Rhodococcus/genetics , Sequence Analysis, DNA , Soil Microbiology , Substrate Specificity , Triticum/growth & development
6.
Braz. j. microbiol ; 46(2): 377-387, Apr-Jun/2015. tab, graf
Article in English | LILACS | ID: lil-749728

ABSTRACT

Three bacterial isolates identified as Alcanivorax borkumensis SK2, Rhodococcus erythropolis HS4 and Pseudomonas stutzeri SDM, based on 16S rRNA gene sequences, were isolated from crude oil enrichments of natural seawater. Single strains and four bacterial consortia designed by mixing the single bacterial cultures respectively in the following ratios: (Alcanivorax: Pseudomonas, 1:1), (Alcanivorax: Rhodococcus, 1:1), (Pseudomonas: Rhodococcus, 1:1), and (Alcanivorax: Pseudomonas: Rhodococcus, 1:1:1), were analyzed in order to evaluate their oil degrading capability. All experiments were carried out in microcosms systems containing seawater (with and without addition of inorganic nutrients) and crude oil (unique carbon source). Measures of total and live bacterial abundance, Card-FISH and quali-, quantitative analysis of hydrocarbons (GC-FID) were carried out in order to elucidate the co-operative action of mixed microbial populations in the process of biodegradation of crude oil. All data obtained confirmed the fundamental role of bacteria belonging to Alcanivorax genus in the degradation of linear hydrocarbons in oil polluted environments.


Subject(s)
Alcanivoraceae/metabolism , Petroleum/metabolism , Pseudomonas stutzeri/metabolism , Rhodococcus/metabolism , Alcanivoraceae/classification , Alcanivoraceae/genetics , Alcanivoraceae/isolation & purification , Biotransformation , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Microbial Consortia , Molecular Sequence Data , Phylogeny , Pseudomonas stutzeri/classification , Pseudomonas stutzeri/genetics , Pseudomonas stutzeri/isolation & purification , /genetics , Rhodococcus/classification , Rhodococcus/genetics , Rhodococcus/isolation & purification , Sequence Analysis, DNA , Seawater/microbiology
7.
KOOMESH-Journal of Semnan University of Medical Sciences. 2007; 8 (2): 1-14
in Persian | IMEMR | ID: emr-83979

ABSTRACT

The combustion of sulfur-containing fossil fuels is a source of environmental pollution. During previous decades, desulfurization of fossil fuels has been considered as a costeffective and alternative friendly environmental approach. DBT has been widely used as a model compound to screen microorganisms ability for desulfurization. There are several reports on the isolation of DBT-desulfurizing bacteria. In this respect, Rhodococus erythropolis IGTS8 has an desulfurization operon [dsz A, B, C], which can convert DBT, as a source of sulfur, to 2HBP via the 4s pathway. In this study, the [dsz A, B, C] operon was cloned into the PVLT31 plasmid and then transformed into the E.coli DH5 alpha. Plasmid purification was performed using mini prep and analysied by PCR technique and restriction endonuclease. Desulfurization activity was measured and compared between the recombinant and Rhodococus erythropolis IGTS8, Pesudomonas aeroginosa EGSOX, Pesudomonas putida EGSOX and E.coli cc118 lambda pir by Gibb's assay and HPLC. Maximum 2HBP production was detected in Pesudomonas aeroginosa EGSOX and E.coli DH5alpha, respectively. Specific activity for desulfurization of DBT is boosted by increasing the copy number of [dsz A, B, C] operon and sulfur repression can be alleviated by promoter replacement


Subject(s)
Operon , Cloning, Organism , Polymerase Chain Reaction , Escherichia coli/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas putida/genetics , Rhodococcus/genetics , Thiophenes
SELECTION OF CITATIONS
SEARCH DETAIL